57 research outputs found

    Minimum Performance Targets for the Built Environment based on Community-Resilience Objectives

    Get PDF
    Disrupted critical infrastructure systems following disasters can result in population outmigration which may subsequently negatively impact a communitys indirect socioeconomic losses over time. In this study, a community was modeled with its interconnected physical-socio-economic attributes and population outmigration was used as a basic proxy community resilience metric. The probability of outmigration for each household was assessed based on the probability that the school-age students, household residents, and employees in the household are affected over a prescribed time period from the occurrence of the hazard to the full restoration of the community. Finally, the potential population outmigration for the community was assessed by aggregating the probability for all the households in the community. Additionally, a prediction model for the number of injuries and fatalities was implemented in the analysis to be served as a community-level life-safety metric. Ultimately, these metrics were combined and utilized to propose a framework for disaggregation of a set of community-level objectives into a set of performance targets for the components of the built environment. Such a model is desirable for policymakers and community leaders in order to make long-term decisions for their community

    Seismic Performance Comparison of a High-Content SDA Frame and Standard RC Frame

    Get PDF
    This study presents the method and results of an experiment to study the seismic behavior of a concrete portal frame with fifty percent of its cement content replaced with a spray dryer ash (SDA). Based on multiple-shake-table tests, the high content SDA frame was found to perform as well as the standard concrete frame for two earthquakes exceeding design-level intensity earthquakes. Hence, from a purely seismic/structural standpoint, it may be possible to replace approximately fifty percent of cement in a concrete mix with SDA for the construction of structural members in high seismic zones. This would help significantly redirect spray dryer ash away from landfills, thus, providing a sustainable greener alternative to concrete that uses only Portland cement, or only a small percentage of SDA or fly ash

    Computational environment for modeling and enhancing community resilience: Introducing the center for risk-based community resilience planning

    Get PDF
    The resilience of a community is defined as its ability to prepare for, withstand, recover from and adapt to the effects of natural or human-caused disasters, and depends on the performance of the built environment and on supporting social, economic and public institutions that are essential for immediate response and long-term recovery and adaptation. The performance of the built environment generally is governed by codes, standards, and regulations, which are applicable to individual facilities and residences, are based on different performance criteria, and do not account for the interdependence of buildings, transportation, utilities and other infrastructure sectors. The National Institute of Standards and Technology recently awarded a new Center of Excellence (NIST-CoE) for Risk-Based Community Resilience Planning, which is headquartered at Colorado State University and involves nine additional universities. Research in this Center is focusing on three major research thrusts: (1) developing the NIST-Community Resilience Modeling Environment known as NIST-CORE, thereby enabling alternative strategies to enhance community resilience to be measured quantitatively; (2) developing a standardized data ontology, robust data architecture and data management tools in support of NIST-CORE; and (3) performing a comprehensive set of hindcasts on disasters to validate the data architecture and NIST-CORE
    corecore